Создание виртуальных окружений и установка библиотек для Python 3 в IDE PyCharm

Создание виртуальных окружений и установка библиотек для Python 3 в IDE PyCharm

  • 6 мая, 2022
  • читать 15 мин

Язык программирования Python считается достаточно простым. На нем легче и быстрее пишутся программы по сравнению с компилируемыми языками программирования. Для Python существует множество библиотек, позволяющих решать практически любые задачи.

Начинающие программисты иногда сталкиваются с проблемой установки и использования сторонних библиотек.

Статья начинается с базовых вещей: с установки Python 3, инструментов разработки Pip и Virtualenv и среды разработки PyCharm в Windows и в Ubuntu.

А после мы рассмотрим, как в PyCharm создавать и использовать виртуальные окружения и устанавливать в них библиотеки с помощью Pip.

Установка Python и Pip

Pip является менеджером пакетов для Python. Именно с помощью него обычно устанавливаются модули/библиотеки для разработки в виде пакетов. В Windows Pip можно установить через стандартный установщик Python. В Ubuntu Pip ставится отдельно.

Установка Python и Pip в Windows

Для windows заходим на официальную страницу загрузки, где затем переходим на страницу загрузки определенной версии Python. У меня используется Python 3.6.8, из-за того, что LLVM 9 требует установленного Python 3.6.

Далее в таблице с файлами выбираем «Windows x86-64 executable installer» для 64-битной системы или «Windows x86 executable installer» для 32-битной. И запускаем скачанный установщик, например, для версии Python 3.8.1 он называется python-3.8.1-amd64.exe.

Во время установки ставим галочку возле Add Python 3.x to PATH и нажимаем Install Now:

Установка Python и Pip в Ubuntu

В Ubuntu установить Python 3 можно через терминал. Запускаем его и вводим команду установки. Вторая команда выводит версию Python.

sudo apt install python3-minimal
python3 -V

Далее устанавливаем Pip и обновляем его. После обновления необходимо перезапустить текущую сессию (или перезагрузить компьютер), иначе возникнет ошибка во время вызова Pip.

sudo apt install python3-pip
pip3 install --user --upgrade pip

Основные команды Pip

Рассмотрим основные команды при работе с Pip в командой строке Windows и в терминале Ubuntu.

КомандаОписание
pip helpСправка по командам
pip search package_nameПоиск пакета
pip show package_nameИнформация об пакете
pip install package_nameУстановка пакета(ов)
pip uninstall package_nameУдаление пакета(ов)
pip listСписок установленных пакетов
pip install -UОбновление пакета(ов)

Если виртуальные окружения не используются, то во время установки пакета(ов) полезно использовать дополнительно ключ --user, устанавливая пакет(ы) локально только для текущего пользователя.

Установка VirtualEnv и VirtualEnvWrapper

VirtualEnv используется для создания виртуальных окружений для Python программ. Это необходимо для того, чтобы избежать конфликты, позволяя установить одну версию библиотеки для одной программы, и другую — для второй. Всё удобство использования VirtualEnv постигается на практике.

Установка VirtualEnv и VirtualEnvWrapper в Windows

В командной строке выполняем команды:

pip install virtualenv
pip install virtualenvwrapper-win

Установка VirtualEnv и VirtualEnvWrapper в Ubuntu

Для Ubuntu команда установки будет следующей:

pip3 install --user virtualenv virtualenvwrapper

После которой в конец ~/.bashrc добавляем:

export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3
source ~/.local/bin/virtualenvwrapper.sh

При новом запуске терминала должны будут появиться сообщения, начинающиеся на virtualenvwrapper.user_scripts creating, что говорит об успешном завершении установки.

Работа с виртуальным окружением VirtualEnv

Рассмотрим основные команды при работе с VirtualEnv в командой строке Windows и в терминале Ubuntu.

КомандаОписание
mkvirtualenv env-nameСоздание нового окружения
workonПросмотр списка окружений
workon env-nameИзменение окружения
deactivateВыйти из окружения
rmvirtualenv env-nameУдалить окружение

Находясь в одном из окружений, можно ставить пакеты через Pip как обычно, и нет необходимости добавлять ключ --user:

pip3 install markdown

Для Windows можно указать в переменных среды WORKON_HOME для переопределения пути, где хранятся виртуальные окружения. По умолчанию, используется путь %USERPROFILE%\Envs.

Установка PyCharm

PyCharm — интегрированная среда разработки для языка программирования Python. Обладает всеми базовыми вещами, необходимыми для разработки. В нашем случае огромное значение имеет хорошее взаимодействие PyCharm с VirtualEnv и Pip, чем мы и будем пользоваться.

Установка PyCharm в Windows

Скачиваем установщик PyCharm Community для Windows с официального сайта JetBrains. Если умеете проверять контрольные суммы у скаченных файлов, то не забываем это сделать.

В самой установке ничего особенного нет, только нажимаем на кнопки next, и в завершение — на кнопку Install. Единственно, можно убрать версию из имени папки установки, так как PyCharm постоянно обновляется, и указанная версия в будущем станет неактуальной.

Установка PyCharm в Ubuntu

Скачиваем установщик PyCharm Community для Linux с официального сайта JetBrains. Очень хорошей практикой является проверка контрольных сумм, так что если умеете, не ленитесь с проверкой.

Распаковываем архив с PyCharm и переименовываем папку с программой в pycharm-community, убрав версию из названия.

Теперь в директории ~/.local (Ctrl + H — Показ скрытый файлов), создаем папку opt, куда и перемещаем pycharm-community. В результате по пути /.local/opt/pycharm-community должны размещаться папки bin, help и т.д. Таким образом PyCharm будет находится в своём месте.

Далее выполняем команды в терминале:

cd /home/maksim/.local/opt/pycharm-community/bin
sh ./pycharm.sh

Производим установку. Очень важно в конце не забыть создать desktop файл для запуска PyCharm. Для этого в Окне приветствия в нижнем правом углу нажимаем на ConfigureCreate Desktop Entry.

Установка PyCharm в Ubuntu из snap-пакета

PyCharm теперь можно устанавливать из snap-пакета. Если вы используете Ubuntu 16.04 или более позднюю версию, можете установить PyCharm из командной строки.

sudo snap install pycharm-community --classic

Использование VirtualEnv и Pip в PyCharm

Поддержка Pip и Virtualenv в PyCharm появилась уже довольно давно. Иногда, впрочем, возникают проблемы, но взаимодействие работает стабильно.

Рассмотрим два варианта работы с виртуальными окружениями:

  1. Создаём проект со своим собственным виртуальным окружением, куда затем будут устанавливаться необходимые библиотеки
  2. Предварительно создаём виртуальное окружение, куда установим нужные библиотеки. И затем при создании проекта в PyCharm можно будет его выбирать, то есть использовать для нескольких проектов

Первый пример: использование собственного виртуального окружения для проекта

Создадим программу, генерирующую изображение с тремя графиками нормального распределения Гаусса. Для этого будут использоваться библиотеки matplotlib и numpy, которые будут установлены в специальное созданное виртуальное окружение для программы.

Запускаем PyCharm и окне приветствия выбираем Create New Project.

В мастере создания проекта, указываем в поле Location путь расположения создаваемого проекта. Имя конечной директории также является именем проекта. В примере директория называется 'first_program'.

Далее разворачиваем параметры окружения, щелкая по Project Interpreter. И выбираем New environment using Virtualenv. Путь расположения окружения генерируется автоматически. В Windows можно поменять в пути папку venv на Envs, чтобы команда workon находила создаваемые в PyCharm окружения. Ставить дополнительно галочки нет необходимости. Нажимаем на Create.

Теперь установим библиотеки, которые будем использовать в программе. С помощью главного меню переходим в настройки FileSettings. Переходим в Project: project_nameProject Interpreter.

Здесь мы видим таблицу со списком установленных пакетов. В начале установлено только два пакета: pip и setuptools.

Справа от таблицы имеется панель управления с четырьмя кнопками:

  • Кнопка с плюсом добавляет пакет в окружение
  • Кнопка с минусом удаляет пакет из окружения
  • Кнопка с треугольником обновляет пакет
  • Кнопка с глазом включает отображение ранних релизов для пакетов

Для добавления (установки) библиотеки в окружение нажимаем на плюс. В поле поиска вводим название библиотеки. В данном примере будем устанавливать matplotlib. Дополнительно через Specify version можно указать версию устанавливаемого пакета и через Options указать параметры. Сейчас для matplotlib нет необходимости в дополнительных параметрах. Для установки нажимаем Install Package.

После установки закрываем окно добавления пакетов в проект и видим, что в окружение проекта добавился пакет matplotlib с его зависимостями, в том числе был установлен пакет с библиотекой numpy. Выходим из настроек.

Теперь мы можем создать файл с кодом в проекте, например, first.py. Код программы имеет следующий вид:

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(-5, 5, 100)

def gauss(sigma, mu):
    return 1/(sigma * (2*np.pi)**.5) * np.e ** (-(x-mu)**2/(2 * sigma**2))

dpi = 80
fig = plt.figure(dpi=dpi, figsize=(512 / dpi, 384 / dpi))

plt.plot(x, gauss(0.5, 1.0), 'ro-')
plt.plot(x, gauss(1.0, 0.5), 'go-')
plt.plot(x, gauss(1.5, 0.0), 'bo-')

plt.legend(['sigma = 0.5, mu = 1.0',
            'sigma = 1.0, mu = 0.5',
            'sigma = 1.5, mu = 0.0'], loc='upper left')

fig.savefig('gauss.png')

Для запуска программы необходимо создать профиль с конфигурацией. Для этого в верхнем правом углу нажимаем на кнопку Add Configuration.... Откроется окно Run/Debug Configurations, в котором нажимаем на кнопку с плюсом (Add New Configuration) в правом верхнем углу и выбираем Python.

Далее указываем в поле Name имя конфигурации, а в поле Script path — расположение Python файла с кодом программы. Остальные параметры не трогаем. В завершение нажимаем на Apply, затем на OK.

Теперь можно выполнить программу и в директории с программой появится файл gauss.png:

Второй пример: использование предварительно созданного виртуального окружения

Данный пример можно использовать во время изучения работы с библиотекой. Например, при изучении PySide2 нам придется создать множество проектов. Создание для каждого проекта отдельного окружения довольно накладно — нужно каждый раз скачивать пакеты, также свободное место на локальных дисках ограничено.

Более практично заранее подготовить окружение с установленными нужными библиотеками. И во время создания проектов использовать это окружение.

В этом примере мы создадим виртуальное окружения PySide2, куда установим данную библиотеку. Затем создадим программу, использующую библиотеку PySide2 из предварительно созданного виртуального окружения. Программа будет показывать метку, отображающую версию установленной библиотеки PySide2.

Начнем с экрана приветствия PyCharm. Для этого нужно выйти из текущего проекта.

На экране приветствия в нижнем правом углу через ConfigureSettings переходим в настройки. Затем переходим в раздел Project Interpreter. В верхнем правом углу есть кнопка с шестерёнкой, нажимаем на неё и выбираем Add..., создавая новое окружение. И указываем расположение для нового окружения. Имя конечной директории будет также именем самого окружения, в данном примере — pyside2. В Windows можно поменять в пути папку venv на Envs, чтобы команда workon находила создаваемые в PyCharm окружения. Нажимаем на ОК.

Далее в созданном окружении устанавливаем пакет с библиотекой PySide2, так же, как мы устанавливали matplotlib. И выходим из настроек.

Теперь мы можем создавать новый проект, использующий библиотеку PySide2. В окне приветствия выбираем Create New Project.

В мастере создания проекта указываем имя расположения проекта в поле Location. Разворачиваем параметры окружения, щелкая по Project Interpreter, где выбираем Existing interpreter и указываем нужное нам окружение pyside2.

Для проверки работы библиотеки создаем файл second.py со следующий кодом:

import sys

from PySide2.QtWidgets import QApplication, QLabel
from PySide2 import QtCore

if __name__ == "__main__":
    app = QApplication(sys.argv)

    label = QLabel(QtCore.qVersion())
    label.show()

    QtCore.qVersion()

    sys.exit(app.exec_())

Далее создаем конфигурацию запуска программы, также как создавали для первого примера. После чего можно выполнить программу.